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We show that, in the continuous 1D Burridge-Knopoff model of multicontact friction, motion occurs via
stick-slip sliding on a finite length rather than in avalanches, excluding the occurrence of self-organized
criticality. We present strong numerical evidence that a transition from collective to strictly solitary motion
occurs at a critical value of the interblock interactions. The solitary motion corresponds to successive stick-slip
motion of one block between immobile neighbors, repeated periodically in time. This state persists also with
open boundary conditions and moderate temperature.
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I. INTRODUCTION

Solid on solid sliding friction is often modeled by one-
dimensional spring-block models, meant to represent very
different situations. At the atomic scale, friction is well de-
scribed by the Frenkel-Kontorova, or by the Frenkel-
Kontorova-Tomlinson model �1�, where the blocks represent
individual atoms in interaction with a surface represented as
a rigid periodic modulation. At much larger length scales, the
Burridge-Knopoff �BK� model, illustrated in Fig. 1, is used
to describe sliding tectonic plates. In the BK model, the in-
teraction with the underlying surface is replaced by a phe-
nomenological velocity dependent friction force with a static
and a dynamic contribution. The dynamics of tectonic sliding
is usually studied by assuming a dynamic friction force that
weakens as a function of velocity �2�.

In all these models where energy is slowly fed to the
system by the moving plate, the dynamics is not uniform but
dominated by fast dissipative events corresponding to stick–
slip motion of the individual blocks. In their velocity weak-
ening BK model, Carlson and Langer have shown �2� that
avalanches of all sizes occur, with a power law size distribu-
tion compatible with the empirical Gutenberg-Richter law.
This lack of an intrinsic length scale puts this deterministic
continuous model into the larger class of systems which are
said to display self-organized criticality �SOC�, �3,4� a term
introduced �3� to describe the behavior of discrete sandpile
automata. Since the finding of Carlson and Langer, the BK
model has been studied intensively in this context, particu-
larly in the two-dimensional discretized version proposed by
Olami, Feder, and Christensen �5� �OFC�. However, several
authors claim or suggest that the model does not display
criticality �6–8�. It has even been conjectured that the
asymptotic avalanche size distribution is dominated by ava-
lanches of size one, the fraction of larger avalanches con-
verging towards zero as the system size increases �9�.

Here we study the multicontact friction variant of the BK
model, proposed by Persson �10� to model macroscopic slid-
ing systems in the boundary lubrication regime. The BK
model of multicontact friction uses a viscous dynamic fric-
tion proportional to velocity, which, contrary to the velocity

weakening earthquake models, effectively reduces the range
of interactions of the blocks. This approach is justified by
previous studies of the same author �11� showing that, at low
velocity, a thin lubricant layer exhibits a distribution of
pinned solid islands that fluidify and begin to slide when the
applied force exceeds a threshold value and pin again as their
velocity vanishes.

We find that, after an initial transient, the motion occurs
as successive domino-like slipping events of limited size
rather than in avalanches, thereby excluding the occurrence
of SOC. At a critical value of the interblock interactions
close to realistic values for sliding surfaces in the boundary
lubrication regime �10�, the system reaches a dynamic re-
gime, that we call a solitary state, where the motion occurs
via periodic step-like slipping events of single blocks. Sur-
prisingly, the solitary state is not destroyed by open boundary
conditions, contrary to the behavior of OFC models �12�.
Also the solitary state is robust against small thermal fluc-
tuations.

II. BK MODEL

The BK model of Fig. 1 consists of N blocks of mass m
connected, at fixed distances D, to a plate moving at constant
velocity vs by springs of spring constant k1, and to nearest-
neighbor blocks by springs of spring constant k2 and rest
lengths D. The plate coordinate is x=vst, and qi is the posi-
tion of block i with respect to its initial equilibrium position
qi�0�=0. The force on a block at rest �i.e., q̇i=0� is

Fi = k1�x − qi� + k2�qi+1 + qi−1 − 2qi� . �1�

This force is balanced up to a threshold value Fs by the static
friction force, so that a block remains motionless until it

FIG. 1. Burridge-Knopoff �BK� model.
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experiences a force Fi�Fs. Once in motion, a block is sub-
jected to a viscous force −2m�q̇i. If the block velocity q̇i
vanishes, the static friction force is reintroduced by setting
the block velocity to zero if it changes sign. For this reason
we always remain in the underdamped regime. The discon-
tinuity of the friction force at q̇i=0 makes the system ex-
tremely nonlinear.

We introduce a dimensionless quantity characterizing the
dynamic state of block i:

hi ��0 if q̇i = 0 �stick�
1 otherwise �slip� � . �2�

We also introduce

Hi�t� � hi�t��hi+1�t� + hi−1�t�� �3�

as the number �0, 1, 2� of neighbors slipping while block i is
slipping. Note that Hi=0 either when block i is at rest �hi

=0� or when block i is moving while both neighbors are at
rest �hi±1=0,hi=1�. Since the fraction of time a block is in
motion can be quite small, it is useful to average Eq. �3� over
a time � around t

�Hi�t�	� �
1

�



t−�

t

Hi�t��dt�, �4�

yielding a continuous function, ranging between 0 and 2. By

defining h̄�t� as the fraction of blocks moving at time t, the
average over all moving blocks

�H�t�	� � � 1

N
�

i

N Hi�t�

h̄�t�
�

�

, h̄�t� = �
i

N
hi

N
� 0

0, h̄�t� = 0
� , �5�

constitutes an order parameter denoting if a system is either
in solitary motion, i.e., �H	�=0, or in collective motion, 0
� �H	��2.

The equations of motion are

mq̈i = hi�− 2m�q̇i + k1�x − qi� + k2�qi+1 + qi−1 − 2qi�� ,

where

hi�t + dt� = �0, q̇i�t�q̇i�t + dt� � 0

1, Fi�t + dt� � Fs

hi�t� , otherwise
� , �6�

with dt the time step of numerical integration. The equations
of motion are made dimensionless by scaling time by �m /k1,
positions by Fs /k1 and forces by Fs:

q̈i = hi�− 2�̃q̇i − �0
2qi + k̃2�qi+1 + qi−1� + x� � hi�i, �7�

with �0=�1+2k̃2 and �i denoting the total force on block i

irrespective of its dynamic state hi. Note that k̃2 and �̃ are in

units of k1 and �k1 /m, respectively, and that F̃s=1. We will
only consider dimensionless quantities, and will omit the
tilde from now on.

The Eqs. of motion �7� are integrated by a fourth order
Runge-Kutta algorithm with time step dt=0.005. The initial

positions qi�0� are chosen from a uniform random distribu-
tion q= �−0.005,0.005�; furthermore x�0�=0 and q̇i�0�=0.
We use periodic boundary conditions, unless specified other-
wise. The width of the random distribution determines the
duration of the transient collective stick–slip behavior. We
consider a driving velocity vs=0.005, which is low enough to
be in the limit vs�max�q̇i� characterizing typical tribological
experiments.

III. SOLITARY VERSUS COLLECTIVE MOTION

In Figs. 2�a� and 2�b� we show the average force �̄ and

the fraction h̄ of moving blocks as in Ref. �10� on a much
longer timescale. The initial collective stick–slip behavior is
due to the very narrow distribution of forces below Fs at t
=0. At the first such collective event almost all blocks slip at

the same time �h̄�1�. As time progresses the distribution of
forces P��� widens and the number of blocks slipping at the
same time decreases. After t�1000, at any time a number of
blocks is moving and, at t�1800, the system is said to be in
a steady state in Ref. �10�.

In the steady state however, the fraction h̄ of moving
blocks keeps decreasing, indicating that the system is still
equilibrating towards a more favorable state. Finally, at t

=20 000, we find that �̄ and h̄ become periodic in time. It is
shown in Fig. 2�c� that �H	��0 when the system becomes
periodic. This indicates that blocks slip in a step-like fashion
between immobile nearest neighbors �hi±1=0�, whence the
name of solitary motion. Once this is the case for the motion
of all blocks for longer than the interval between successive
slips of the same block, the system is trapped in this solitary
state and becomes periodic.

Analytical results give a rationale for this behavior. For
solitary motion �hi±1=0 when hi=1� the equations of motion

FIG. 2. Time dependence of �a� the average force �̄ �b� the

fraction h̄ of blocks moving and �c� the measure of collective be-
havior �H	� for N=10 000,�=0.5,k2=1,�=0.5. Panels �a� and �b�
reproduce Fig. 4 of Ref. �10� extended to larger time. Notice in �c�
the transition around t�20 000 to solitary motion, causing �̄ and h̄
�see insets of panels �a� and �b�� to become periodic in time. Note
that 	t
� in this figure.
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�7� become decoupled, and the motion of a single block is
that of a discontinuously driven, damped harmonic oscillator.
For initial conditions qi�0�= q̇i�0�=0 and Fi�0�=Fs=1 �i.e.,
k2�qi+1+qi−1�+x=Fs�, and by assuming vs�max�q̇i�:

q̈i + 2�q̇i + �0
2qi = Fs. �8�

The solution of Eq. �8� for the underdamped case ����0�

qi�t� =
Fs

�0
2�1 − exp�− �t�� �

�
sin��t� + cos��t��� �9�

reaches zero velocity after a time

�t =
�

�
, with � = ��0

2 − �2. �10�

In a time �t the block travels a distance �13�

	q =
Fs

�0
2�1 + exp�− ��/��� . �11�

The interval 	t between consecutive slip events of the same
block is given by

	t = 	q/vs, �12�

because, although most of the time a block is not moving, its
average velocity has to be equal to the plate velocity vs. The
fraction of time a block is moving, is simply the ratio of the

duration of a slip event and the interval between them: h̄
=�t /	t.

In the interval 	t between slip events, the force Fi acting
on block i is slowly increased by the movement of the plate
by an amount 	q �k1	q in dimensional units�, and by the
sudden movement of both neighbors by an amount 2k2	q.
Therefore, the force directly after the slip event is Fmin=1
− �1+2k2�	q �since Fs=1�. We can identify three ranges of
the forces acting on a block:

1 − �1 + 2k2�	q  Fi  1 − 2k2	q low

1 − �1 + k2�	q  Fi  1 − k2	q medium.

1 − 	q  Fi  1 high

A block is in the low force range after it has slipped, moves
to the medium range when one neighbor has slipped, and to
the high range when both neighbors have slipped. Movement
within each range is caused by the slow motion of the plate.

Figure 3�a� shows a snapshot of the forces on part of the
chain in the solitary regime. Peaks of only one block are
present in the lower and higher force range, separated by
slanted lines in the medium force range where most of the
blocks reside. In Fig. 3�b� we show the distribution of forces
P��� around the time of the snapshot of Fig. 3�a�. P��� is
peaked at �=1, and �=1− �1+2k2�	q due to the predomi-
nance of lines with a small slope.

The distribution of forces P��� in the solitary state shown
in Fig. 3�b� is highly symmetric, hence its mean �̄ can be
approximated by the center of the distribution:

�̄ �
1 − �1 − �1 + 2k2�	q�

2
=

1

2
�1 − exp�− ��/��� , �13�

where we have made use of Eq. �11� for 	q. The friction
force measured in experiments is the lateral force acting on
the support

f = �
i=1

N

�qi − x� � − N�̄ , �14�

where we have assumed in Eq. �7� that �i�qi±1−qi��0 and
�iq̇i�Nvs�0. Since the kinetic friction force Eq. �14� is
normalized by the static friction force Fs, this result implies
that the ratio of the kinetic to the static friction force in the
solitary state can be used to extract, from experiments, the
ratio � /� characterizing the sliding system.

The analysis of the behavior of the forces �i in the soli-
tary state, leads us to define a typical length scale in the
system. We find that solitary motion requires two consecu-
tive blocks in the high force range to be separated by an
arbitrary number of blocks in the medium force range, and
by exactly one block in the low force range. The blocks in
the medium force range are arranged in monotonically in-
creasing or decreasing slanted lines that will reach the high
energy region one after the other. However, since in the time
�t it takes block i to slip, the upper surface travels a distance
vs�t, the absolute slope of the lines is constrained by

�d�

di
� � vs�t . �15�

Since, in the strictly solitary state, each slanted line must
start and end in the medium force zone 	�=	q wide, the
minimum slope also limits the number of blocks along the
line to

Nline = � di

d�
�	� 

	q

�tvs
=

	t

�t
. �16�

The finite duration �t of a slip event introduces a typical
length scale, contrary to systems displaying SOC. Strictly

FIG. 3. �a� Forces �i for part of a system in a solitary state, with
k2=1,�=0.5,N=10 000, and �b� the distribution of forces measured
over N=10 000 blocks over a period of 3000 time steps. Dashed
lines from top to bottom indicate �=1−	q ,�=1− �1+k2�	q and
�=1− �1+2k2�	q, respectively. Arrows indicate which blocks will
be in the high force range next. The peak in the distribution at �
�1− �1+2k2�	q is caused by moving blocks, and vanishes for vs

=0.
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speaking, in a continuous model, the size of an avalanche is
given by the number of blocks performing simultaneous mo-
tion. By this definition, in a system in solitary motion, all
avalanches are of size one. However, sequences up to Nline of
size one avalanches can and do occur.

Next, we show in Fig. 4 the time evolution of �H	� for
three values of k2. We find that a transition occurs at a critical
relative value of the spring constant k2

c �1.5. Below k2
c, �H	�

smoothly decreases to zero, signaling the occurrence of the
solitary state, whereas, above k2

c, �H	� reaches a constant
finite value. An estimate of parameters for realistic sliding
lubricated surfaces �10� gives k2�1. For values of k2 just
below k2

c there is an initial, relatively smooth decrease of
�H	�, but the solitary state is reached only after many at-
tempts. This process is shown in the left panel of Fig. 5
where we show a gray scale map of the order parameter �H	�

for k2 below and above k2
c. The initial uniform band corre-

sponds to collective stick slip motion �see Fig. 2�. This be-
havior is followed by a very short period of almost uniform
motion with velocity vs, appearing as black regions in the
figure. Notice that uniform motion has been shown to be
unstable �2� for models with a velocity weakening friction
force. Afterwards, for k2�k2

c, domains of solitary motion of
different sizes grow and shrink, until finally the complete
system is in a solitary state. For k2�k2

c, the system remains

in a collective state, characterized by the fact that neighbor-
ing blocks move simultaneously for part of their movement,
much like domino topplings. However, large patches of soli-
tary motion that expand and disappear are also present. We
expect the probability that, for k2�k2

c, a patch of solitary
motion extends to the whole system to vanish for N→�.

There are several indications that the transition to solitary
motion is of first order. For a given system size, increasing k2
towards k2

c increases the time needed to reach the solitary
state, but does not change qualitatively the shape of the curve
shown in Fig. 4 for k2=1.25. Moreover, once the solitary
state is reached, if k2 is increased in small steps above k2

c the
system readjusts to remain in a now metastable solitary state,
in analogy to overheating a system above Tc. We wish to
underline however, that the evidence for a sharp transition is
only numerical.

IV. STABILITY OF THE SOLITARY STATE

Next we study the stability of the solitary state for small
perturbations caused by thermal fluctuations. Due to these
fluctuations a block may temporarily obtain enough energy
to slip, even though it is experiencing a force smaller than
the static friction force. Following Persson �10� we can de-
fine an energy barrier for block i as

	Ei = U�Fs,qi±1,x� − Ui�Fi,qi±1,x� , �17�

where Ui�Fi ,qi±1 ,x� is the potential energy of block i, and
U�Fs ,qi±1 ,x� is the potential energy of the same block,
moved to where it would experience the static friction force
Fs=1, while keeping the position of the neighboring blocks
and of the plate fixed. The potential energy Ui is given by

Ui =
1

2
�x − qi�2 +

k2

2
�qi+1 − qi�2 +

k2

2
�qi−1 − qi�2

= g�qi±1,x� +
Fi

2

2�0
2 . �18�

Since g�qi±1 ,x� does not depend on Fi, Eqs. �17� and �18�
give

	Ei = 	Emax�1 − Fi
2�, with 	Emax = 1/2�0

2. �19�

The probability that block i slips �i.e., overcomes the energy
barrier� within a time dt is assumed to be

Pi�dt� = � exp�− 	Ei/kBT�dt , �20�

where � is an attempt frequency, T the temperature, and kB
the Boltzmann constant. In practice, finite temperature is
simulated by drawing a random number ri= �0,1� at each
integration step for each block, and if ri� Pi�dt�, where dt is
the integration time step size, the static friction force is de-
creased to zero by setting hi=1.

In Fig. 6 the time dependence of the order parameter for
collective motion �H	� is shown at different temperatures for
k2=1 where at T=0 the solitary state is stable. For low tem-
peratures the order parameter goes to zero in a way similar to
the zero temperature case, although small fluctuations do oc-
cur. These fluctuations grow with increasing temperature, un-

FIG. 4. Order parameter for collective motion �H	� as a function
of time, �=	t�k2� �Eq. �12��, for three values of k2 above and below
k2

c �1.5��=0.5,N=10 000�. At k2=0.75 the decrease of �H	� is
smooth, whereas at k2=1.25 �H	� also decreases to zero, but only
after several attempts. At k2=1.75 �H	� tends to a constant finite
value.

FIG. 5. �Hi	� as a function of time and block number i for �
=0.5,N=512,�=	t�k2=0�. In the left panel k2=1.25�k2

c and in the
right panel k2=1.75�k2

c. The logarithmic color coding scheme is
given to the right. White areas are in solitary motion. Note that also
above k2

c the solitary state appears, but does not extend to the whole
system.

B. A. H. HUISMAN AND A. FASOLINO PHYSICAL REVIEW E 72, 016107 �2005�

016107-4



til the system cannot maintain the solitary state. In Fig. 7 we
show a gray scale map of the order parameter per block i, as
a function of time. At low temperature the system evolves
towards the solitary state in much the same way as in the
zero temperature case �compare with Fig. 5�. Collective mo-
tion occurs only very locally, very weakly, and often only
involves the direct neighbors of the blocks that were ther-
mally excited. At higher temperatures, larger patches of col-
lective motion appear, without ever extending to the whole
system.

We recall that once every block in the system is moving in
a solitary fashion for longer than the time between two slips
	t, the complete system is trapped in the solitary state. Since
each block slips the same distance 	q, the system becomes
periodic with a period 	t. A finite temperature gives rise to a
finite probability for a block to slip at a force Fi�Fs, and
since the distance a block slips is proportional to the force

acting on the block at the moment it slips �Eq. �11��, a ther-
mally induced slip event breaks the perfect periodicity of the
solitary state. However, as clearly shown in Fig. 7 the nature
of the motion is not drastically different from strictly solitary
motion.

Lastly in Fig. 8 we show that the solitary state is not
destroyed by open boundary conditions. One can recognize
the region of collective motion at the edges, because the
interval between successive slip events of the same block is
larger than in the solitary state. These regions of collective,
nonperiodic motion appear, expand, and shrink at the bound-
ary, but do not extend to the interior of the sample. This is
remarkable because open boundary conditions are expected
to destroy simple periodic states �12�.

V. SUMMARY AND CONCLUSIONS

In summary we have shown that the motion in the con-
tinuous BK model with viscous friction at low driving ve-
locities occurs in domains of finite size presenting an intrin-
sic length scale, thereby excluding the occurrence of SOC.
Below a critical value of the interblock interaction the sys-
tem evolves to a strictly solitary, periodic state with succes-
sive slipping of individual blocks among immobile neigh-
bors. The solitary state is stable against small thermal
fluctuations and open boundary conditions. In the range of
parameters estimated to describe actual sliding systems �10�,
this model predicts strictly solitary motion, for which Eq.
�14� can be used to measure the damping and stiffness of the
sliding system.
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FIG. 6. Order parameter for collective motion �H	� as a function
of time for different temperatures, and for �=	t ,k2=1,�=0.5, and
N=10 000. The solitary state is stable at least up to kBT
=	Emax/30.

FIG. 7. �Hi	� for the parameters of Fig. 5 and k2=1, at kBT
=Emax/30 �left� and kBT=Emax/15 �right�. In the low temperature
case �left� small fluctuations only very briefly and locally amount to
collective motion. The light gray vertical bands are caused by series
of blocks moving with very small overlap in time. At higher tem-
perature �right� thermal events may lead to large patches of collec-
tive motion, that however do not extend to the whole system.

FIG. 8. Force �i�t� in a system of N=512 blocks with �=0.5
and k2=1, with open boundary conditions. Black is �i�t�=1 and
white is �i�t�=1− �1+2k2�	q. Note that the boundary conditions do
not change the solitary state of the bulk �60� i�470� even after t
=90 000 time steps ��103	t�. Also note the difference in interval
	t between solitary �bulk� and collective �edges� slip events.
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